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Abstract
Prevention of age-related cognitive decline is an increasingly important topic. Recently, increased attention is being directed
at understanding biological models of successful cognitive aging. Here, we examined resting-state brain regional low-
frequency oscillations using functional magnetic resonance imaging in 19 older adults with excellent cognitive abilities
(Supernormals), 28 older adults with normative cognition, 57 older adults with amnestic mild cognitive impairment, and 26
with Alzheimer’s disease. We identified a “Supernormal map”, a set of regions whose oscillations were resistant to the
aging-associated neurodegenerative process, including the right fusiform gyrus, right middle frontal gyrus, right anterior
cingulate cortex, left middle temporal gyrus, left precentral gyrus, and left orbitofrontal cortex. The map was unique to the
Supernormals, differentiated this group from cognitive average-ager comparisons, and predicted a 1-year change in global
cognition (indexed by the Montreal Cognitive Assessment scores, adjusted R2 = 0.68). The map was also correlated to
Alzheimer’s pathophysiological features (beta-amyloid/pTau ratio, adjusted R2 = 0.66) in participants with and without
cognitive impairment. These findings in phenotypically successful cognitive agers suggest a divergent pattern of brain
regions that may either reflect inherent neural integrity that contributes to Supernormals’ cognitive success, or alternatively
indicate adaptive reorganization to the demands of aging.
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Introduction
Cognitive aging trajectories are most often characterized by a
gradual decline of cognitive performance commonly beginning

in the fifth or sixth decade of life (Ronnlund et al. 2005).
Individual trajectories are unique with regard to which cogni-
tive abilities are affected and to what degree, but most
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age-related cognitive changes may be related to a fundamental
deterioration of information transfer across widespread brain
networks (Salthouse 2009; Reuter-Lorenz and Park 2010). These
distributed brain networks can be disrupted as a consequence
of regionally specific structural or functional changes, and
emergent properties of the networks will be affected accord-
ingly (Andrews-Hanna et al. 2007). However, it is unclear
whether successful cognitive aging may rely on the individual’s
ability to initially resist (reserve) or eventually adapt to regional
brain changes (compensation) (Stern et al. 2008; Park and
Reuter-Lorenz 2009; Gutchess 2014).

Inspired by early literature on successful aging (Baltes and
Carstensen 1996; Schulz and Heckhausen 1996), there has been
a growing body of work specifically emphasizing the biological
models of successful cognitive aging (Lindenberger 2014). In
one instantiation, “Supernormals” are a unique group of indivi-
duals who demonstrate above-average to superior cognitive
performance compared to age- and education-matched cogni-
tively average-for-age older adults (i.e., average-agers)
(Mapstone et al. 2016; Lin et al. 2017a). In other definitions,
Super-agers demonstrate comparable performance to younger
or middle-aged individuals (Pudas et al. 2013; Rogalski et al.
2013; Gefen et al. 2014, 2015; Sun et al. 2016; Bott et al. 2017). In
both definitions, these cognitively superior individuals show
preserved genetic and biochemical relative to those in both
normal and abnormal aging processes. Specifically, these indi-
viduals exhibit low frequency of apolipoprotein E allele 4
(APOE4) carriers (Rogalski et al. 2013; Lin et al. 2017b), low oxi-
dative stress burden (Mapstone et al. 2016), and low levels of
amyloid or tau deposition (Rogalski et al. 2013; Lin et al. 2017a).

More recent efforts are being made to fully understand
the neural integrity of Supernormals. A recent longitudinal
study revealed slower brain atrophy rates in Supernormals
compared to average-agers (Cook et al. 2017), while other
emerging literatures seem to reach a consensus on testing the
role of maintaining multiple anterior and posterior regions in
Supernormals. Among the brain structure literature, compared
to average-agers or younger adults, Supernormals showed
greater cortical thickness or volume in the anterior cingulate
cortex (Harrison et al. 2012; Rogalski et al. 2013; Gefen et al.
2015), multiple regions within the default mode network (Sun
et al. 2016), the corpus callosum (Bott et al. 2017), and the
medial temporal lobe (Rosano et al. 2012). Among the brain
function literature, Persson et al.’s longitudinal study suggested
the functional stability of the medial temporal lobe in main-
taining memory performance in aging (Persson et al. 2012). In
our previous cross-sectional work, Supernormals tended to
have strengthened networks among posterior regions (e.g., left
superior/middle temporal gyrus) or between posterior and
anterior regions (e.g., anterior cingulate cortex and right middle
frontal gyrus) but weakened networks between anterior regions
(Lin et al. 2017a). These structural and functional imaging lit-
eratures seem to agree on the importance of maintaining the
“youth-like” posterior-oriented brain regions for successful cog-
nitive aging (Nyberg et al. 2012; Lindenberger 2014), or the
emphasis on posterior region-oriented neural reserve on driv-
ing cognitive maintenance and brain health (Stern et al. 2008),
while contrast with the view on a typical cognitive aging pro-
cess—relying on anterior regions to compensate for the func-
tional loss of posterior regions (Park and Reuter-Lorenz 2009).

Meanwhile, structural measures have been shown more rel-
evant to cognitive decline than cognitive maintenance over
time (Burgmans et al. 2009) while functional capacity of large-
scale brain networks seems to be more vulnerable to aging

than structure itself, at least among those without cognitive
deficits (Pudas et al. 2013; Fjell et al. 2016). Hence, to further val-
idate the findings concerning the roles of anterior versus poste-
rior regions in cognitive maintenance, we proposed to conduct
a data-driven longitudinal study focusing on neural functional
integrity of Supernormals. We hypothesized that Supernormals
maintain a unique set of brain regions, whose functional integ-
rity would be resistant to the aging process by supporting the
longitudinal stability of superior cognitive performance and
fighting against aging-related neuropathological changes.
Specifically, compared to the average-agers, the neural reserve-
related posterior regions may be more active in Supernormals
while neural compensation-related anterior regions may be
less active.

To examine this hypothesis, we first developed a “Supernor-
mal map” based on longitudinally stable neural patterns in
Supernormals. We applied a machine-learning-based multivari-
ate pattern analysis approach called “searchlight analysis” to
examine the longitudinal difference in neural patterns derived
from amplitude of low-frequency fluctuation (ALFF) of the
resting-state functional MRI (rs-fMRI), between Supernormals and
their average-ager counterparts over 2 years. ALFF measures the
amplitude of low-frequency oscillations (0.01–0.08Hz) induced by
neuronal activity (Fox and Raichle 2007; Balduzzi et al. 2008; Zuo
et al. 2010). Emerging evidence suggests ALFF may reflect neural
synchronization across discrete brain regions (Buzsaki and Dra-
guhn 2004; Balduzzi et al. 2008). Different from functional connec-
tivity analysis which often requires pre-defined seeds or specific
regions of interest, ALFF measure enables whole-brain voxel-wise
analysis to identify distributed voxels that are related to success-
ful cognitive aging. Meanwhile, altered ALFF has been observed
in regions involved in the default mode network (Zang et al. 2007)
as well as group with amnestic mild cognitive impairment
(aMCI), a symptomatic preclinical stage of Alzheimer’s disease
(AD) (Ren et al. 2016). Altogether, ALFF may inform cognitive
aging-related neural functional changes that are distributed in
the brain and may be particularly suitable to differentiate the
anterior versus posterior regions hypothesis tested here. Sec-
ondly, we internally validated the predictive value of the “Super-
normal map” for cognitive function in the same set of older
adults without cognitive impairment from the first step. Lastly,
we validated the predictive value of the “Supernormal map” for
AD pathophysiology in a separate set of older adults with and
without AD. Here we were particularly interested in AD patho-
physiology because AD is the most common aging-associated
neurodegenerative disease, while AD pathophysiology is known
to occur decades earlier than the onset of AD (Hardy and Selkoe
2002; Jack et al. 2010b; Jansen et al. 2015). Validating the “Super-
normal map” for AD pathophysiology in older adults with a wide
cognitive spectrum will facilitate the generalizability of the identi-
fied map in its clinical utility.

Materials and Methods
Data Source

Data used in this study were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography, other biological mar-
kers, and clinical and neuropsychological assessment can be
combined to measure the progression of aMCI and early AD.
Imaging protocols and procedures were developed for control

Supernormal Brain Map Wang et al. | 243



of data quality and scan consistency. Phantoms and strategies
were also finalized to ensure the consistent acquisition of high
quality data at the different sites (Jack et al. 2010a). For up-to-
date information, see www.adni-info.org.

Participants

All participants in this study were enrolled in ADNIGO and
ADNI2 where rs-fMRI data were collected using 3 T scanners. We
conducted 3 steps to develop and validate the “Supernormal
map”: identification of a “Supernormal map”, internal validation,
and examination in the context of AD.

For the first 2 steps, we identified a group of older adults with-
out cognitive impairment (referred to as “Normative” afterwards)
[n = 29, including 13 Supernormals (SNI) and 16 average-ager con-
trols (ACI)] who had consecutive rs-fMRI data and cognitive
assessments at 2 time points (1 year apart) from our previous
dataset (including 354 older adults free of dementia/mild cogni-
tive impairment or major psychiatric disorders over the course of
participating in ADNIGO and ADNI2) (Lin et al. 2017b). In previous
analysis, we applied finite mixture models to examine 5-year tra-
jectories of episodic memory (EM) and executive function (EF)
standardized composite scores. The composite EM index was
based on the memory-related learning and delayed domains of
multiple memory tests (e.g., Rey Auditory Verbal Learning Test,
Logical Memory test, etc.). The composite EF index was based on
the Clock Draw Test, Category Fluency, and Trails A and B. The EF
tests cover cognitive domains of visuospatial function, fluency,
attention, and processing speed, which are all important for
understanding aging or AD associated cognitive decline (Faust
and Balota 1997; Shulman 2000). In ADNI dataset, EM and EF > 0
indicated intact cognitive performance; and the 2 composite indi-
ces have been validated to differentiate participants with or with-
out AD, and to predict AD progression (Crane et al. 2012; Gibbons
et al. 2012). Three latent classes were generated: “Successful
agers” exhibited high and stable EM [Intercept (SE) = 1.51 (0.06);
Slope (SE) = 0.003 (0.02)] and EF [Intercept (SE) = 1.05 (0.08); Slope
(SE) = 0.08 (0.02)] over time; the other 2 classes exhibited high but
gradually declined EM [Intercept (SE) = 1.41 (0.08); Slope (SE) =
−0.05(0.02)] and EF [Intercept (SE) = 1.25 (0.08); Slope (SE) = −0.14
(0.02)] or low but intact EM [Intercept (SE) = 1.08 (0.20); Slope (SE) =
−0.12 (0.07)] and EF [Intercept (SE) = 0.40 (0.07); Slope (SE) = −0.06
(0.02)] over time. “Successful agers” had significantly different
intercept and slope in EM, as well as different slope in EF, from
the other 2 classes. SNI were selected from the “successful agers”
while ACI were from the other 2 classes. Of note, the latter 2 clas-
ses’ performance remained normal (EM and EF > 0) over the
course despite the slight decline, and a secondary analysis was
conducted related to the class difference in the “Supernormal
map” (see Results and Supplemental Fig. 1). In addition, there is
no current consensus definition for successful cognitive aging. In
our operationalization of the construct we consider successful
cognitive aging to be longitudinally stable superior performance
in multiple cognitive domains relative to age- and education-
matched peers. In the present study, SNI and ACI significantly
differed in EM at both time points, and differed in EF at follow-
up (see Table 1).

For the last step, we identified a different group of 18 nor-
mative participants who only had rs-fMRI data at 1 time point
as well as beta-amyloid and tau data from the previous dataset
[including 6 Supernormals (SNE) and 12 average-ager controls
(ACE)] (Lin et al. 2017b). We also identified stable aMCI (a group
at high risk for AD, n = 57), as well as AD subjects (n = 26) from
ADNI dataset who had 1 time point rs-fMRI data and beta-

amyloid and tau data from the same 6-month window. The
diagnoses of aMCI and AD were made by a psychiatrist or neu-
rologist at each study site and reviewed by a Central Review
Committee based on serial neuropsychological tests (details in
Fig. 1). The 3 groups (SNE + ACE, aMCI, and AD) significantly dif-
fered in their cognitive performance (see Table 1).

Of note, all participants included in the present study were
required to have rs-fMRI data collection within a 6-month win-
dow of the cognitive assessments. Other inclusion/exclusion
criteria are described in Figure 1. The sample characteristics for
the 2 datasets are presented in Table 1.

Identification of “Supernormal Map”

Data acquisition, preprocessing, and whole-brain searchlight
analysis were conducted to determine the longitudinal neural
profile of Supernormals using the dataset of 29 Normative (13
SNI and 16 ACI).

Data Acquisition and Preprocessing
All rs-fMRI data were collected using a 3.0 Tesla Phillips MRI
with an echo-planar imaging sequence (TR = 3000ms, TE =
30ms, slice thickness = 3.3mm, matrix = 64 × 64, spatial reso-
lution = 3 × 3 × 3mm3, number of volumes = 140, number of
slices = 48). Structural images were obtained using an MPRAGE
sequence (TR/TE = 6.77/3.13ms, TI = 0ms, FA = 9°, matrix = 256 ×
256, resolution 1 × 1 × 1mm3, slice thickness = 1mm), which
were then used for registration during preprocessing.

Across individuals, the first 10 volumes were discarded to
avoid potential noise related to the equilibrium of the scanner
and participant’s adaptation process. The remaining 130
volumes were preprocessed using slice time correction and
head motion correction. The images were then registered to
each individual’s own structural image, normalized to the
Montreal Neurological Institute (MNI) standard space and spa-
tially smoothed using a Gaussian kernel (FWHM = 4mm). All
preprocessing was conducted using the Data Processing
Assistant for rs-fMRI package (Chao-Gan and Yu-Feng 2010).

ALFF Calculation
We followed the processing reported earlier (He et al. 2007; Ren
et al. 2016). Briefly, after removing the linear trend, the time
series of BOLD signals were converted to the frequency domain
using the fast Fourier transform. ALFF value of each voxel was
defined as the averaged square root of the power spectrum
across 0.01–0.08 Hz using the Resting-State fMRI Data Analysis
Toolkit (Song et al. 2011).

Voxel-based Morphometry Analysis
Since ALFF measurement was derived from gray matter (GM)
(Zuo et al. 2010), here we extracted GM volume to control for
potential brain atrophy in the following analysis. Voxel-based
morphometry (VBM) was performed using the SPM8 package
(http://www.fil.ion.ucl.ac.uk/spm). Briefly, the structural images
were segmented into GM, white matter, and cerebrospinal fluid.
After an initial affine registration of the GM map into the MNI
space, the GM images were nonlinearly warped using diffeo-
morphic anatomical registration through Exponentiated Lie
Algebra (Ashburner 2007).

Whole-brain Searchlight Analysis
We used searchlight analysis, a multivariate method with
whole-brain ALFF data to identify voxels that discriminate SNI
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Table 1. Sample characteristics

Identification of “Supernormal map” and internal validation SNI (N = 13) ACI (N = 16) T, F, or χ2 test, df (P)

Age baseline, Mean (SD) 76.46 (7.52) 75.19 (6.62) 0.49, 27 (0.63)
Male, N (%) 5 (38.5) 8 (50) 0.39, 1 (0.53)
Education, Mean (SD) 16.23 (2.24) 16.13 (2.5) 0.12, 27 (0.91)
APOE4 carrier, N (%) 4 (30.8) 6 (37.5) 0.14, 1 (0.71)
GM volume baseline, Mean (SD) 0.36 (0.04) 0.36 (0.04) −0.38, 27 (0.71)
GM volume follow-up, Mean (SD) 0.36 (0.04) 0.36 (0.04) −0.20, 27 (0.84)
EM baseline, Mean (SD) 1.35 (0.37) 0.89 (0.58) 2.45, 27 (0.021)
EM follow-up, Mean (SD) 1.34 (0.39) 0.91 (0.47) 2.63, 27 (0.014)
EF baseline, Mean (SD) 1.11 (0.52) 0.73 (0.71) 1.59, 27 (0.12)
EF follow-up, Mean (SD) 1.28 (0.54) 0.51 (0.36) 3.19, 27 (0.004)
MOCA baseline, Mean (SD) 26.85 (1.77) 25 (2.03) 2.57, 27 (0.016)
MOCA follow-up, Mean (SD) 27 (2.35) 25.25 (2.52) 1.92, 27 (0.066)

External validation SNE + ACE aMCI AD χ2 or F-test, df1, df2 (P)
(N = 18) (N = 57) (N = 26)

Age, Mean (SD) 71.78 (6.28) 71.95 (7.89) 73.75 (7.35) 0.59, 2, 98 (0.56)
Male, N (%) 9 (50) 31 (54.39) 13 (50) 0.19, 2 (0.91)
Education, Mean (SD) 17.56 (1.98)a 16.18 (2.63)b 15.38 (2.67)b 3.91, 2, 98 (0.023)
APOE4 carrier, N (%) 7 (38.9)a 25 (43.9)a 20 (76.9)b 9.21, 2 (0.010)
GM volume, Mean (SD) 0.34 (0.03) 0.33 (0.03) 0.32 (0.04) 1.90, 2, 98 (0.16)
Aβ/pTau ratio, Mean (SD) 6.18 (3.40)a 5.97 (4.24)a 3.27 (2.19)b 5.44, 2, 98 (0.006)
EM, Mean (SD) 1.20 (0.58)a 0.29 (0.70)b −1.01 (0.63)c 7.96, 2, 92 (0.001)
EF, Mean (SD) 0.83 (0.61)a 0.38 (0.86)a −1.03 (0.83)c 8.56, 2, 92 (<0.001)
MOCA, Mean (SD) 26.22 (2.70)a 23.30 (6.03)b 16.10 (8.04)c 43.05, 2, 90 (<0.001)

SNI, Supernormals; ACI, average-ager controls (for Identification of “Supernormal map” and Internal validation); SNE, Supernormals; ACE, average-ager controls (for

Examination in the context of AD); aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; APOE4, apolipoprotein E ε4; SD, standard deviation; GM, gray

matter; Aβ, Beta-amyloid-(1-42); EM, episodic memory; EF, executive function; MOCA, Montreal Cognitive Assessment.

Note. a, b, c represents the post-hoc comparison difference from the F-test. Bold values indicate P < 0.05.

Figure 1. Sample selection flow chart. Note. rs-fMRI, resting-state functional magnetic resonance imaging; aMCI, amnestic mild cognitive impairment; AD,

Alzheimer’s disease; SNI, Supernormals; ACI, average-ager controls (for Identification of “Supernormal map” and Internal validation); SNE, Supernormals; ACE, average-ager

controls (for Examination in the context of AD). *If the participants had more than one time points’ data, a random selection that corresponded to the beta-amyloid and

pTau data was used.
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and ACI at baseline and follow-up separately. Compared to uni-
variate approaches where each brain region or cluster that can
differentiate 2 groups is analyzed separately, multivariate
approaches focus on discovering multiple functionally relevant
voxels that have discriminative power from distributed loca-
tions simultaneously (Uddin et al. 2011). Searchlight analysis
measures signals present in small voxel subsets, providing
increased sensitivity and flexibility in identifying neural clus-
ters or patterns that are distributed across multiple neurons or
regions at the whole-brain scale (Kriegeskorte et al. 2006; Etzel
et al. 2013). Briefly, for a given voxel (Vi), its searchlight was
defined as a cube with an edge length of 3 voxels centered at Vi
(3 × 3 × 3 dimensional). Within this searchlight, the spatial pat-
tern was defined by a 27-dimensional vector. We extracted the
spatial pattern from the ALFF data within the searchlight for
the subjects (N = 29) and then performed leave-one-out-cross-
validation (LOOCV) (Pereira et al. 2009) classification using the
Gaussian Naïve Bayes classifier (Mitchell et al. 2004). The per-
centage of correct classifications was then noted at the center
voxel Vi as the local classification information for the search-
light. The process was then conducted for all brain voxels,
yielding a 3-dimensional map of cross-validation accuracy at
every voxel (“searchlight map”).

Statistical significance was calculated using permutation
tests (Nichols and Holmes 2002). First, we randomly permuted
the group labels for the subjects. We then performed search-
light analysis on whole-brain ALFF data using permuted class
labels (the processing and cross-validation schemes were iden-
tical to the process with true group labels). The permutation
test was then repeated 50 000 times, resulting in a distribution
of permutation accuracy for each searchlight. We counted the
number of times where the permutation accuracy was greater
than the accuracy obtained based on true class labels. Each
searchlight’s P-value was reported as (number of permutation
accuracy > true accuracy)/number of permutations.

“Supernormal Map” Identification
From the searchlight maps, we first identified voxels with high
classification accuracies (classification accuracy > 65%, FDR cor-
rected P < 0.05, cluster size > 20 voxels) at baseline (“map at
baseline”, 5060 voxels; Fig. 2, blue voxels) and follow-up (“map
at follow-up”, 12 740 voxels; Fig. 2, yellow voxels) separately.
The “Supernormal map” was defined as the overlap in pre-
served regions (voxels that were retained in both “map at base-
line” and “map at follow-up”), meaning that the “Supernormal
map” corresponds to regions that consistently show high dis-
criminative power between SNI and ACI across time (1642 vox-
els, Fig. 2, green voxels). For descriptive purposes, we also
calculated the mean searchlight accuracy between SNI and ACI

across time within the “Supernormal map”. To compare the
level of brain oscillations within the “Supernormal map”
between SNI and ACI, we extracted ALFF values within the map
from SNI and ACI at baseline and follow-up, respectively. Two-
sample t-tests were applied to quantify the difference of oscil-
lations between groups at each time (Fig. 3).

For comparison, we also extracted the “discrepancy map”,
defined as voxels that were unique in the “map at follow-up”
but not in the “map at baseline” (10 879 voxels, Fig. 2, copper
voxels). Of note, the discrepancy between SN and AC widened
with aging, resulting in more voxels with discriminative capac-
ity in follow-up.

To understand the brain structure, we extracted GM volumes
within the “Supernormal map” as well as within the whole brain.

We then performed a repeated-measure ANOVA to estimate time
(baseline vs. follow-up) by group (SNI vs. ACI) effects on GM
volumes. P-value was set at <0.05 for the analysis.

Internal Validation

The goal of internal validation was to validate the predictive
power of the “Supernormal map” on “global cognition”, which
was measured using the Montreal Cognitive Assessment
(MOCA) (Rossetti et al. 2011), a commonly used cognitive
screening test comprised of subtests measuring executive,
visuospatial, memory, language, and attention abilities. For the
MOCA, we acquired data at baseline, follow-up, and longitudi-
nal change (follow-up—baseline). We converted the total MOCA
scores to z-scores and used them for the following regression
analyses. In addition, we performed repeated-measure ANOVA
to estimate time (baseline vs. follow-up) by group (SNI vs. ACI)
effects on the MOCA. Of note, we used MOCA for the internal
validation process since it was not part of the characterization
for Supernormals, and MOCA covers multiple cognitive
domains than EM/EF (Rossetti et al. 2011) (in our previous
study, only 16–25% of the variance in EM and EF was explained
by MOCA (Lin et al. 2017b).

Regression on MOCA using the “Supernormal map”: To ensure the
validity of the results, we examined change in MOCA over time
using 2 analytical strategies: 1) taking MOCA at follow-up as the
outcome controlling for baseline measure, and 2) taking the longi-
tudinal change (follow-up—baseline) in MOCA as the outcome.
For model (1), age (at follow-up), sex, APOE4, and the GM volume
(at follow-up) were included as covariates, while ALFF features
(ALFF values of voxels) from the “Supernormal map” at baseline
were the predictor. For model (2), age (at baseline), sex, APOE4,
and the change of GM volume were included as covariates while
longitudinal change (follow-up—baseline) of ALFF features from
the “Supernormal map” were the predictor.

As a comparison, we used ALFF features from the “map at
baseline”, “map at follow-up”, and “discrepancy map”, respec-
tively, and repeated the regression using the 2 types of analyti-
cal strategies. Same sets of covariates were applied.

During regression, ALFF features were scaled to [−1, 1] to
ensure similarity of ranges for feature values and comparable
contribution of each feature to the final regression from both
training and test sets (Chang and Lin 2011). We retained the
LOOCV partition scheme and used epsilon-insensitive support
vector regression (ε-SVR) (Dosenbach et al. 2010) with the linear
kernel (Hsu et al. 2003) to predict changes of MOCA. For ε-SVR,
all identified voxels’ ALFF values were used as candidate pre-
dictors. The support vectors (i.e., final predictors selected from
candidate predictors) and the penalty parameter C jointly con-
trolled the final regression line. The process was in essence
performing linear regression in hyperspace using ε-insensitive
loss: an epsilon-tube around the regression line in hyperspace
was defined, no penalty was assigned for any training data
within the tube; whereas data beyond the tube were penalized.
The parameters (penalty parameter C, tolerance ε) of the ε-SVR
model were selected using a grid search on subsets of the data
and then fed into the final regression models. After regression,
we evaluated the results by performing model fitting of the
observed and predicted cognitive measurements using the lin-
ear function y = ax + b. Adjusted R2 was used to estimate good-
ness of fit for the model. The regression was implemented
using LIBSVM library (Chang and Lin 2011). All statistical testing
and curve fitting were conducted using MATLAB R2015a (The
Mathworks, Natick, MA).
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Examination in the Context of AD

This step aimed to examine relationships between the
“Supernormal map” and AD pathology. Here we extracted ALFF
features of the “Supernormal map” from a separate dataset [18
Normative (6 SNE and 12 ACE), 57 aMCI and 26 AD]. We used the
identified map to predict AD pathology.

AD pathology: Beta-amyloid-(1–42) (Aβ) and pTau were
derived from cerebrospinal fluid aliquots and measured using
the multiplex xMAP Luminex platform (Luminex Corp., Austin,

Tex., USA) with immunoassay kit-based reagents (INNO-BIA
AlzBio3; Innogenetics, Ghent, Belgium). Aβ and pTau data used
in the present study were from the same time point as the rs-
fMRI data for the independent sample. The Aβ/pTau ratio was
used as the “AD signature” for which lower Aβ/pTau ratio indi-
cated an increased burden of AD pathology (De Meyer et al.
2010).

AD pathology regression: We converted the Aβ/pTau ratios to
z-scores and used ε-SVR with a linear kernel to predict them

Figure 2. Identified voxels from searchlight classification of Supernormals and average-ager controls. “Supernormal map” (green) includes voxels that were retained

in both “map at baseline” (blue) and “map at follow-up” (yellow). “Discrepancy map” (copper) includes voxels that were unique in the “map at follow-up” but not the

“map at baseline”. Note. L, left; R, right.

Figure 3. Regional oscillation difference between SNI and ACI within the “Supernormal map”. (A) Oscillation difference at baseline. (B) Oscillation difference at follow-up.

Note. The color bar indicates the scale for the t-statistic. Hot/cold colors indicate stronger/weaker oscillations in SNI compared to ACI. L-MTG, left middle temporal gyrus; R-

FFG, right fusiform gyrus; L-PreCG, left precentral gyrus; R-ACC, right anterior cingulate cortex; R-MFG, right middle frontal gyrus; L-OFC, left orbitofrontal cortex; SN,

Supernormals; AC, average-ager controls; L, left; R, right. Figures were generated using Data Processing & Analysis for Brain Imaging toolbox (Yan et al. 2016).
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from the “Supernormal map”. Age, sex, years of education,
APOE, and GM volume were added as covariates. Years of edu-
cation was controlled here due to the group difference in this
variable (see Table 1). Other details of the regression analysis
are as described in section “Internal Validation”.

Results
Identified “Supernormal Map”

The “Supernormal map” consists of the right fusiform gyrus
(R-FFG), right middle frontal gyrus (R-MFG), right anterior cingu-
late cortex (R-ACC), left middle temporal gyrus (L-MTG), left
precentral gyrus (L-PreCG), and left orbitofrontal cortex (L-OFC).
These regions showed mean classification accuracy ranging
from 0.70 to 0.87 between SNI and ACI across time (Table 2).

Within the “Supernormal map”, we found higher oscilla-
tions in the L-MTG, R-FFG, while lower oscillations in the
L-PreCG, R-ACC, and R-MFG in SNI compared to ACI at both
baseline and follow-up. Mixed patterns of oscillations were
found in the L-OFC (higher oscillations in L-OFC1, lower oscilla-
tions in L-OFC2 in SNI compared to ACI at both time points)
(Fig. 3). For a secondary analysis, we compared the oscillations
within the “Supernormal map” between 2 classes of average-
agers involved in ACI reported in our previous paper (Lin et al.
2017b). We did not find any distinct difference in the oscilla-
tions between the 2 classes, suggesting the functional similar-
ity in the 2 average-ager classes (Supplementary Fig. 1).

A repeated-measure ANOVA for GM volume within the
“Supernormal map” or the whole brain showed no significant
time (baseline vs. follow-up) or group (SNI vs. ACI) main effects
or interaction effect (all P > 0.05).

Internal Validation

SNI and ACI significantly differed in MOCA at baseline (see
Table 1). A repeated-measure ANOVA for MOCA showed a sig-
nificant group (SNI vs. ACI) main effect (F1,27 = 6.04, P = 0.021)
but no time by group interaction effect.

Using ε-SVR (controlling for relevant covariates), ALFF fea-
tures extracted using the “Supernormal map” strongly pre-
dicted MOCA. “MOCA at follow-up controlling for MOCA at
baseline”: adjusted R2 = 0.68 (P < 0.001); and “longitudinal
changes of MOCA”: adjust R2 = 0.62 (P < 0.001) (Fig. 4A).

As comparisons, the ε-SVR on MOCA changes using ALFF
features from the “map at baseline”, “map at follow-up”, and

“discrepancy map” provided prediction results of adjusted R2

ranged 0.02–0.20 (P ranged 0.06 to 0.72) (Fig. 4B,D).

Examination in the Context of AD

Controlling for covariates, ε-SVR on Aβ/pTau ratio using ALFF
features extracted from “Supernormal map” reached adjusted
R2 = 0.66 (P < 0.001) (Fig. 5).

Discussion
Here we identify a “Supernormal map”—a set of brain regions
whose longitudinal stability in their low-frequency oscillations—
characterizing a state of successful cognitive aging. The
“Supernormal map” includes the R-FFG, R-MFG, R-ACC, L-MTG, L-
PreCG, and L-OFC (Fig. 2, green voxels, Fig. 3). The map strongly
predicts 1 year change in global cognition (measured using
MOCA, adjusted R2 ranged 0.62–0.68, Fig. 4), and was also strongly
correlated to Alzheimer’s pathology (mean adjusted R2 = 0.66,
Fig. 5). We confirmed the hypothesis that some specific brain
regions, the functional level of which, either active or deactive,
remaining relatively stable over time, contributed to the explana-
tion of the Supernormal phenomenon (Lindenberger 2014).

Compared to average-ager controls, Supernormals tend to
have consistently higher oscillations in the L-MTG, R-FFG and
L-OFC1, and lower oscillations in the L-PreCG, R-ACC, R-MFG,
and L-OFC2 across time points. The location and direction of
oscillations in most of the regions are consistent with previous
investigation of neural mechanisms, especially high neural
reserve while low neural compensation (Stern et al. 2008). For
example, maintaining high activation of the medial temporal
lobe was related to slower decline in memory performance in
healthy older adults (Persson et al. 2012), which is consistent
with our findings in the MTG for Supernormals. Also, active
FFG in memory tasks was observed in both younger adults, rel-
ative to older adults (Gutchess et al. 2005), and cognitively
healthy older adults, relative to patients with AD (Scarmeas
et al. 2004). On the other hand, increased activation in the MFG,
PreCG, or ACC during various cognitive tasks was often
observed in older adults compared to younger adults, compen-
sating for the decreased neural efficiency in posterior brain
regions (Gutchess et al. 2005; Waiter et al. 2008; Hampshire
et al. 2010). Noticeably, the oscillation patterns among
Supernormals in the present study are more alike those
reported by younger adults in the literature, further supporting
their reserved neural capacity. Reliance on neural reserve to

Table 2. Regions consistently showed high discriminative power between Supernormals and average-ager controls across time in the
“Supernormal map”

Region Size of
cluster (voxels)

Peak mean classification
accuracy across time

t-value P-value Peak MNI coordinates

x y z

Oscillations of SNI > ACI L-MTG 125 0.87 4.20 <0.001 −45 −75 15
L-OFC1 88 0.75 3.84 0.01 −18 60 −18
R-FFG 16 0.79 3.03 <0.001 42 −63 −15

Oscillations of SNI < ACI L-PreCG 30 0.77 3.15 <0.001 −24 −15 54
L-OFC2 33 0.70 4.06 0.02 −9 69 0
R-ACC 27 0.79 2.76 0.02 18 3 33
R-MFG 208 0.85 3.16 <0.001 45 24 33

Note. All results are thresholded at P < 0.05 (FDR corrected). MNI, Montreal Neurological Institute; SN, Supernormals; AC, average-ager controls; L-MTG, left middle

temporal gyrus; L-OFC, left orbitofrontal cortex; R-FFG, right fusiform gyrus; L-PreCG, left precentral gyrus; R-ACC, right anterior cingulate cortex; R-MFG, right middle

frontal gyrus.
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maintain cognitive function is a signature of younger and
healthier brain (Stern 2002). However, we should acknowledge
that the “Supernormal map” does not completely meet another
criterion for “youth brain” related to lateralization. Previous
studies observed greater right hemisphere involvement for
executive function and memory tasks in younger age (Kelley
et al. 1998; Carpenter et al. 2000). Meanwhile, age-related cogni-
tive decline affects the functional attributions in the right
hemisphere to a greater degree than those in the left hemi-
sphere (Goldstein and Shelly 1981; Grady et al. 1994; Jockwitz
et al. 2017). In the present study, Supernormals seem to rely on

both hemispheres. This phenomenon may relate to the “suc-
cessful compensation” discussed previously that supports suc-
cessful cognitive aging (Lindenberger 2014). Lastly, similar to
previous studies of mixed relationship between the OFC’s vol-
ume and cognitive performance in aging (Salat et al. 2002;
Zimmerman et al. 2006), the exact functional role of OFC in
Supernormals is yet to be determined.

Furthermore, we linked the “Supernormal map” with the con-
text of AD. Noticeably, most regions in the map are part of the
default mode network (e.g., R-ACC, R-MFG, and L-PreCG) or execu-
tive control network (e.g., L-MTG), which are compromised in AD-
related neurodegeneration (Sorg et al. 2007). The strong relation-
ship between the “Supernormal map” and AD pathology may
suggest that the adaptive plasticity (e.g., biochemical integrity;
Mapstone et al. 2016) among Supernormals compensates for or
resists the neurodegeneration-related changes, which may help
protect against the pathological deposition within and outside
these default networks. However, to better understand the rela-
tionship between AD pathology and the “Supernormal map”,
future studies will be required to investigate the exact AD pathol-
ogy within the “Supernormal map”. Also, with a larger sample
size in Supernormals in the future, we will need to investigate the
predictive value of the “Supernormal map” in classifying the phe-
notypes across the cognitive aging spectrum from Supernormal,
average-agers, aMCI, to AD.

We need to acknowledge that the sample size for generating
the “Supernormal map” was small (SNI = 13, ACI = 16), and we
only utilized data from 2 time points. Here we used the stability
of cross-time data derived from the searchlight analysis to
identify the “Supernormal map” while there are other ways of
comparing group difference in longitudinal imaging data in
which a participant can be their own control (e.g., repeated
measures of ANOVA). Besides, we should recognize that per-
forming searchlight analysis requires to minimize the spatial
misalignment across participants. Although we preprocessed

Figure 4. Regression on MOCA using ALFF features from different maps in SNI and ACI. Regression on MOCA at follow-up adjusting for relevant baseline measure

(left); regression on longitudinal change (follow-up year 1) of MOCA (right) using ALFF features from the “Supernormal mask” (A), “map at baseline” (B), “map at fol-

low-up” (C), and “discrepancy mask” (D). In all models, age, sex, APOE4, and GM volume were controlled. Note. Jitter-observed MOCA values were used to avoid

overplotting.

Figure 5. Regression on Aβ/pTau ratio using ALFF features from the “Supernormal

map”. Age, sex, years of education, APOE, and GM volume were controlled. Note.

Jitter-observed Aβ/pTau values were used to avoid overplotting.
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and registered all participants’ data to the MNI template, there
may still be inter-subject alignment mismatch. There may also
be limitation related to the use of the ADNI dataset in both
“Supernormal map” identification and the examination related
to AD (even though we used 2 different sets of sample), which
needs to be further validated in other datasets, including the
work related to the AD phenotype classification. Also, the ADNI
dataset includes only adults aged 55–90 years, future studies
involving the comparison of Supernormals’ brain functions
with young or middle-age adults are needed. Next, previous
studies have identified unique subgroups of older adults that
demonstrated strong cognitive ability and investigated the rele-
vant anatomic, genetic, and behavioral factors (Waiter et al.
2008; Rogalski et al. 2013; Sun et al. 2016; Bott et al. 2017). To
further characterize the Supernormal group identified in our
study, other biological and lifestyle factors and their relation-
ships with the “Supernormal map” needs to be tested.
Furthermore, there is a lack of consensus on how to define suc-
cessful cognitive aging. Here we incorporated 5-year superior
performance of multiple cognitive domains (episodic memory
and executive function) as exemplars of successful aging
(Lin et al. 2017b), but we acknowledge that other studies need
to be conducted to further prove the validity of the “Supernormal
map”. Finally, unlike previous work where lesser decline of corti-
cal thickness was observed in Supernormals (Cook et al. 2017),
GM volumes within the “Supernormal map” or the whole brain
were not significantly different between groups in our study. We
suspected such discrepancy may result from the difference in the
age ranges between studies (i.e., ours were 10 years younger than
Cook et al.’s). Along with other concerns on the lack of younger
comparison, it is necessary to validate the “Supernormal map” in
a wider age range.

In summary, by constructing a functional brain map with
longitudinally stable oscillations for older adults with excep-
tional cognitive performance, we confirmed that some brain
regions whose function have the potential to be resistant to the
effects of aging or aging-associated neurodegeneration. The
regions, especially the differential levels of oscillations between
anterior and posterior parts, involved in the “Supernormal
map” may provide the biomarkers for future work on promot-
ing successful cognitive aging and preventing cognitive decline.

Supplementary Material
Supplementary data are available at Cerebral Cortex online.
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